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Abstract 
Aim: To compare the flexural strength and elastic modulus of different interim 
restorative materials subjected to different intervals of accelerated aging. Mate-
rials and Method: Three groups of interim restorative materials (N = 120) were 
prepared using three different manufacturing techniques: conventional PMMA 
resin (Jet Tooth Shade), computer-aided design/computer-aided manufactur-
ing (CAD/CAM) milled resin blocks (Telio CAD), and three-dimensional 
(3D) printed resin (Crown & Bridge NextDent). The specimens from each 
group were subdivided into four equal subgroups (n = 10) and subjected to 
accelerated aging through thermocycling and brushing according to different 
time intervals of aging (baseline, 3 months, 6 months, and 12 months). The 
flexural strength and elastic modulus were measured using a three-point bend-
ing test. The data were analyzed using two-way analyses of variance (ANOVA), 
one-way ANOVA, and Tukey’s post hoc test at a significance level of 0.05. 
Results: At baseline, the flexural strength and elastic modulus were signifi-
cantly greater in the CAD/CAM milled group (p < 0.05) than in the conven-
tional and 3D-printed groups. However, no significant difference in flexural 
strength was observed between the conventional and 3D-printed groups. How-
ever, a significant difference (p < 0.05) in the elastic modulus was observed 
between the conventional and 3D-printed groups. At all aging intervals (3, 6 
and 12 months), the flexural strength and elastic modulus were significantly 
greater (p < 0.05) in the CAD/CAM milled group than in the conventional 
group and the 3D-printed group. Within each material tested, the baseline 
group had significantly greater values (p < 0.05) than did the other age groups. 
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However, there was no significant difference observed among the age inter-
vals of 3, 6, and 12 months, except for the CAD/CAM milled group. In the 
12-month aging group, a significant difference (p < 0.05) in the elastic mod-
ulus was found; no significant difference (p < 0.05) was observed between the 
3 and 6-month aging groups. Conclusion: The CAD/CAM milled group con-
sistently outperformed the conventional and 3D-printed groups in all age in-
tervals. Therefore, the CAD/CAM milling technique could be recommended 
for long-term temporization for patients with increased occlusal forces, such 
as parafunctional habits, or for full-arch implant-supported interim prosthe-
ses. 
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1. Introduction 

Interim or provisional fixed restorations are used for a period during treatment 
until the definitive restoration is placed. They are crucial for the success of de-
finitive restorations and essential for pulp protection, restoring aesthetics, main-
taining a healthy periodontium, and providing occlusal compatibility [1]-[4]. A 
good quality interim restoration should have good functional load tolerance and 
retention [5]-[7]; moreover, it must be aesthetically and functionally adequate 
[2] [4]. 

One important aspect of interim restorations that should be considered when 
providing long-term interim restoration is flexural strength [6] [8]. Flexural 
strength is crucial for patients with parafunctional habits, long-span prostheses, 
and full-mouth rehabilitation and when adjustment of the vertical dimension is 
planned, as these types of cases require more durable restorations [3] [8] [9]. 
Flexural strength is defined as “the transverse strength or modulus of rupture, 
that is obtained by supporting a bar or beam at each end and loading it in the 
middle. This test is called a three-pointing bending test” [10]. Low flexural 
strength leads to breakage of the restoration and tooth drifting, which affects 
function and aesthetics [3] [9]. The elastic modulus is also an important feature 
for providing long-term interim restoration., and it is defined as “a measure of 
the stiffness of a material”. A higher modulus of elasticity indicates a stiffer ma-
terial [10]. For an interim restoration to be stiffer and resistant to deformation, it 
is essential to resist the deflection forces produced during mastication [10] [11]. 

A variety of methods, including conventional, CAD/CAM milling and 3D- 
printing, can be used to fabricate interim restorations. Conventional interim 
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restorations have been used for many years because they are easily fabricated and 
cost effective [6] [9]. However, these methods have many disadvantages, such as 
polymerization shrinkage, decreased fracture resistance, exothermic reactions and 
color instability [12] [13]. Alternatively, new technologies (CAD/CAM milling 
and 3D-printing) provide interim restorations with improved physical proper-
ties [14] [15]. Moreover, CAD/CAM milled restorations have higher wear re-
sistance, fracture resistance and microhardness [16] [17]. 3D-printed restora-
tions also have advanced mechanical properties, excellent marginal fit, improved 
patient acceptance and greater accuracy [14] [18]-[20]. The main disadvantage 
of these new technologies is the high initial cost of implementation and mainte-
nance [15] [21] [22]. CAD/CAM milled restorations are made by a subtractive 
method in which resin blocks are shaped into desired designs by cutting burs and 
then processed under standard parameters [11] [14] [15]. 3D-printed restorations 
are made by additive methods in a layer-by-layer pattern [22]. 3D-printed interim 
restorations are processed via several methods, including stereolithography (SLA), 
digital light projection (DLP), and photopolymer jetting (PolyJet) [14] [15]. Each 
of these printing methods has pros and cons. However, the SLA printing method 
yields restorations with good mechanical properties [22]. 

Frequent temperature variations in the oral cavity can cause interim restora-
tions to expand or contract, increasing mechanical stress and ultimately increasing 
the risk of restoration fractures [23]. Accelerated aging is used to imitate the 
thermal and mechanical stress that dental restorations and natural teeth experi-
ence by consuming different foods and beverages and daily tooth brushing for 
months within a short period of time [18] [23] [24]. Interim dental restorations 
in the oral environment are subjected to thermal fluctuations, repetitive tooth 
brushing, and occlusal pressure [25] [26]. Resin-based materials undergo an ag-
ing process that includes softening, degradation, and deformation of the matrix. 
Consequently, cracks begin to form and expand within the porous resin regions, 
potentially impacting the mechanical and physical properties of the dental mate-
rials. Furthermore, teeth-brushing simulation is widely recognized as a well-es- 
tablished model that induces surface abrasions due to the application of brush-
ing forces [23] [24]. 

Many studies have compared the flexural strength of conventional, CAD/CAM 
milled and 3D-printed interim restorations. Alageel et al. reported that after accel-
erated aging, the highest flexural strength was obtained for 3D-printed, CAD/CAM 
milled and conventional materials [27]. In addition, Ribeiro et al. showed that 
thermocycling reduced the flexural strength of interim materials, except for 
3D-printed resins [28]. However, Tasin et al. showed that after thermocycling, 
the conventional PMMA group had the lowest mean flexural strength, whereas 
the flexural strength of the CAD/CAM milled group was similar to that of the 
3D-printed group [29]. Pantea et al. reported that 3D-printed interim restora-
tions have greater flexural strength and modulus of elasticity than conventional 
interim restorations [30]. Kawano et al. concluded that after thermocycling, the 
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flexural strength of new laboratory-processed composite resin was significantly 
greater than that of conventional resin [31]. Furthermore, thermocycling caused 
a decrease in the flexural strength of most of the tested materials [31]. To the 
best of our knowledge, there is a lack of information about the flexural strength 
of newly introduced 3D-printed PMMA interim restorations when assessed for 
their long-term use (3 - 12 months) compared to conventional and CAD/CAM 
PMMA interim restorations. The aim of this study was to compare the effect of 
accelerated aging applied to simulate a period of 3 - 12 months of use on the 
flexural strength and elastic modulus of conventional, CAD/CAM milled and 
3D-printed PMMA interim restorations. The null hypothesis was that there 
would be no difference in the mechanical properties between the tested materials 
after 3 - 12 months of simulation effects of the oral environment. 

2. Materials and Methods 

Three groups of interim restorative materials (N = 120) were tested in the form 
of rectangular specimens (25 × 2 × 2 mm) according to ISO10477 (Figure 1). 
Conventional autopolymerized PMMA materials (Jet Tooth ShadeTM Powder; 
Lang Dental Co., Chicago, IL, USA), CAD/CAM-milled prefabricated resin 
blocks (Telio CAD; Ivoclar Vivadent), and 3D-printed resin (Crown & Bridge 
NextDent®; 3D Systems, Soesterberg, Netherlands) were assessed in this study 
(Figure 1). Specimens from each group were subdivided into four equal sub-
groups (n = 10) according to time interval of aging at baseline, 3 months, 6 
months and 12 months (Chart 1). 

 

 
Figure 1. Schematic representation of specimen dimensions. 

 
Conventional specimens were prepared using PMMA (Jet Tooth ShadeTM 

self-Curing acrylic resin, 6/1 Kit-Lang Dental Manufacturing Co., Inc., Illinois, 
IL, USA). A 2:1 powder/liquid mixing ratio was prepared using a metal mold 
under a load of 3 kg and then finished using wet silicon carbide paper (600 grit). 
The CAD/CAM milled groups were prepared using PMMA resin blocks (Telio 
CAD; Ivoclar Vivadent). Specimens were designed using a 3-Shape Dental Sys-
tem™ CAD solution and then milled using a VHF CAM 5-S1 milling machine 
(VHF camfacture AG, Ammerbuch, Germany) with bur diameters of 1 mm and 
3 mm. Design and milling were performed using standard parameters. Specimen 
finishing was performed according to the manufacturer’s instructions. The 
3D-printed specimens were fabricated using an SLA printer (028D; DWS, Italy)  
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Chart 1. Study methodology. 

 
in PMMA resin (Crown & Bridge NextDent®; 3D Systems, Soesterberg, The 
Netherlands). The thickness of the build layer was 50 µ with a 0˚ orientation. 
The specimens were soaked in 95% ethanol alcohol and then polymerized for 30 
minutes using a postcuring unit (according to the manufacturer’s instructions). 

Thermocycling and brushing were utilized to represent accelerated aging pro-
cesses, where every 2500 cycles of brushing and thermocycling simulated 3 
months of oral use [29] [32] [33]. All the specimens were subjected to 2500 or 
5000 or 10,000 cycles (5˚C - 55˚C), with a dwell time of 30 sec and a transfer 
time of 10 sec. The tested specimens underwent simulated brushing following 
thermocycling. Each specimen was fixed on a customized putty mold to stabilize 
it and subjected to 2500, 5000, or 10,000 brushing cycles of 15 mm traveling 
length and a speed of 35 mm/sec under a vertical load of 250 g and 1.5 Hz. The 
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brushing cycles consisted of horizontal back-and-forth strokes of soft nylon 
toothbrush (TARA) in a 1:1 water/dentifrice slurry (Colgate). At baseline and 
after 3, 6 and 12 months of accelerated aging, the flexural strength and modulus 
of elasticity were tested using a three-point bending test with a universal testing 
machine (Instron Corp., Canton, MA, USA) with a 500 N load cell and a vertical 
load applied on the center of the specimens with a 20 mm support span and a 4 
mm/min crosshead speed (Figure 2). The load was continuously applied until 
the specimens broke, and the breaking loads were recorded separately. Flexural 
strength was measured from the registered breaking load using the following 
equation: 

 

 

Figure 2. Sample placed in universal testing machine (Instron) and subjected to a 
three-point bending test. 

 
σ = 3FL/2bd2; 

where 
σ = Flexural strength, F = load (force) at the fracture point, L = length of the 

support span, b = width of specimen, d = thickness of the specimen. 
The elastic modulus (E) was measured using the following equation: 

E = FL3/4bh3d; 

where, L = length of the support span, b = the width of the specimen at the fail-
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ure site, h is the thickness of the specimen at the failure site, and d is the deflec-
tion at load F. 

3. Results 

Data were normally distributed according to the Shapiro-Wilk test. Intergroup 
comparisons were performed using two-way (ANOVA) or one-way (ANOVA), 
and pairwise comparisons were performed using Tukey’s post hoc test. All the 
statistical analyses were conducted using SPSS version 26 (Chicago, IL, USA). 
The mean and standard deviation of the flexural strength and elastic modulus of 
each specimen are presented in Table 1. 

 
Table 1. The results of One-way ANOVA and Tukey’s post hoc test. 

Variable Material 

Aging 

Baseline 3 months 6 months 12 months 

mean ± sd 
F 

p-value 
mean ± sd 

F 
p-value 

mean ± sd 
F 

p-value 
mean ± sd 

F 
p-value 

Flexural 
strength 
(MPa) 

Conventional 84.35 ± 11.47Ba 

0.00 

69.38 ± 
10.28Ab 

0.00 

72.38 ± 8.87Ab 

0.00 

68.27 ± 5.73Ab 

0.00 CAD/CAM 
milled 

148.85 ± 6.21Bb 
118.59 ± 
10.57Ac 

116.77 ± 
13.54Ac 

115.47 ± 15.41Ac 

3D-printed 80.62 ± 8.25Ba 46.96 ± 7.40Aa 47.34 ± 8.69Aa 38.36 ± 8.33Aa 

Elastic 
modulus 
(MPa) 

Conventional 
2813.43 ± 
202.49Bb 

0.00 

2303.76 ± 
294.13Ab 

0.00 

2321.23 ± 
129.12Ab 

0.00 

2439.14 ± 
126.80Ab 

0.00 
CAD/CAM 

milled 
3581.63 ± 

90.84Cc 
3049.54 ± 
193.48Ac 

2987.81 ± 
198.47Ac 

3337.98 ± 
219.55Bc 

3D-printed 
1761.94 ± 
250.02Ba 

1146.55 ± 
195.69Aa 

1260.71 ± 
95.12Aa 

1281.15 ± 
181.67Aa 

Different uppercase letters denote statistical difference among the aging intervals for the same material. Different lowercase letters 
denote statistical difference among the tested material for each tested variable. Significant difference at p ≤ 0.05. 
 

Among the baseline and all aging interval groups, the CAD/CAM milled 
group had significantly greater flexural strength and elastic modulus (p < 0.05) 
than did the conventional and 3D-printed groups (Table 1). 

At baseline, no significant difference in flexural strength was observed be-
tween the conventional and 3D-printed groups (Figure 3). However, a signifi-
cant difference (p < 0.05) in the elastic modulus was observed between the two 
groups (Figure 4). 

Within each tested material, the baseline group had significantly greater val-
ues (p < 0.05) than did the other aging intervals. However, there was no signifi-
cant difference observed among the aging intervals of 3, 6, and 12 months, ex-
cept for the CAD/CAM milled group. In the 12-month aging group, a significant 
difference (p < 0.05) was found in the elastic modulus. No significant difference 
(p < 0.05) was observed between the 3- and 6-month aging groups. 
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Figure 3. The mean values of Flexural strength (MPa) of different interim restorations 
through different accelerated aging intervals. 

 

 
Figure 4. The mean values of Elastic modulus (MPa) of different interim restorations 
through different accelerated aging intervals. 

4. Discussion 

The aim of this in vitro study was to compare three different interim restorative 
materials prepared using different manufacturing techniques and subjected to 
accelerated aging. The null hypothesis was rejected because significant differ-
ences were found in the flexural strength and the elastic modulus between the 
tested groups. 

Several studies have used different accelerated aging techniques to simulate 
the effects of the oral environment on interim restorations. Ellakany et al. tested 
the effect of 50,000 thermocycles on conventional, CAD/CAM milled and 
3D-printed PMMA interim restorations [34]. Yao et al. compared the flexural 
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strength and marginal accuracy of conventional and CAD/CAM milled materials 
before and after 5000 thermal cycles [35]. Atay et al. investigated the physical 
characteristics of CAD/CAM milled interim restorations after being subjected to 
various storage conditions, such as storage in a dry environment, immersion in 
distilled water at 37˚C for one week and water immersion for one week, followed 
by 10,000 thermal cycles [23]. In the present study, the accelerated aging proto-
col involved subjecting the specimens to 2500, 5000 and 10,000 thermal cycles 
followed by toothbrushing to simulate 3, 6 and 12 months of exposure to the 
oral environment. The results of the present study are consistent with those of 
earlier studies, indicating that the mechanical properties of interim restorations 
are impacted by accelerated aging. The results showed a significant reduction in 
the flexural strength and elastic modulus at all aging intervals compared to those 
at baseline. However, there was no significant difference observed among the age 
intervals of 3, 6, and 12 months, except for the CAD/CAM milled group. In the 
12-month aging group, a significant difference was found in the elastic modulus 
compared to that of the 3 and 6 months aging groups; this was consistent with 
the findings of Ellakany et al., who discovered that the milled group had the 
highest elastic modulus [34]. 

In the present study, the CAD/CAM milled restorations had the highest flex-
ural strength and elastic modulus, followed by the conventional and 3D-printed 
interim restorations at baseline and at all aging intervals. This finding could be 
attributed to the highly cross-linked structure of CAD/CAM milled restorations 
and the decreased manufacturing errors as these restorations are produced un-
der strict conditions, which effectively minimizes flaws during restoration mill-
ing [9] [11] [14] [16] [23] [35] [36]. These results are consistent with those of a 
systematic review conducted by Al-Humood et al., which concluded that the 
mechanical properties of CAD/CAM milled interim restorations are significantly 
stronger than those of 3D-printed and conventional restorations [37]; this could 
be attributed to the reduced porosity or enhanced structural characteristics [11] 
[16]. 

Conventional interim restoration material had a lower flexural strength and 
elastic modulus than did CAD/CAM milled. It is possible that conventional au-
topolymerized resin could entrap some air during manual mixing of PMMA 
resins, which leads to more porous material and crack initiation, resulting in re-
duced mechanical strength [27] [38] [39]. The strength of conventional interim 
restoration can be significantly affected by water absorption resulting from stor-
age in water or artificial saliva, as well as thermocycling, because conventionally 
fabricated interim restorations tend to absorb water, which leads to deterioration 
of the polymeric chains through hydrolysis of the monomer. Consequently, the 
mechanical properties of the resin degrade [16] [21] [36] [37]. 

In this study, the group with interim restoration using 3D-printing showed 
the lowest flexural strength and elastic modulus and the least durability for 
long-term usage. These findings were confirmed in another study conducted by 
Digholdar et al., who compared the flexural strength of interim restoration fab-
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ricated using different methods [9]. They found that the CAD/CAM milled in-
terim restoration had the highest flexural strength compared to the convention-
al, and the 3D-printed interim restoration had the lowest flexural strength. A 
similar result was reported by Berli et al., who showed that 3D-printed interim 
restoration exhibited lower resistance to stress and aging than conventional, or 
CAD/CAM milled interim restorations [19]. In addition, the 3D-printed group 
was more affected by accelerated aging [19]. This is possibly due to the different 
manufacturing parameters such as curing speed, printed layer thickness, print-
ing direction and post-curing techniques. These factors were identified to have 
an impact directly or indirectly on the mechanical properties of 3D-printed resin 
material [9] [19] [40]-[42]. This impact was proven by Piedra-Cascón et al., who 
found that printing a 3D-printed prosthesis in a vertical direction would pose 
significantly higher compressive strength than a 3D-printed prosthesis in a hor-
izontal direction [43]. In addition, Väyrynen et al., and Hwangbo et al., reported 
that the utilization of isopropyl alcohol for resin monomer removal after print-
ing leads to a substantial decline in mechanical properties [44] [45]. 

Moreover, conflicting results have been reported by Alqahtani et al., Alageel et 
al., and Tasin et al., who all agreed that CAD/CAM milled, and 3D-printed res-
ins have similar flexural strength values [21] [27] [29]. The discrepancy in the 
results for this study and the study by Alqahtani et al., could be attributed to the 
difference in materials used and the absence of using the accelerated aging [21]. 
Further, the discrepancy in the results from Alageel et al., may be due to the dif-
ferent fabrication methods and parameters used in the DLP printing method 
[27]. On the other hand, Tasin et al. compared PMMA CAD/CAM milled and 
3D-printed composite resin materials [29]. Furthermore, Sadek et al., found that 
3D-printed PMMA interim materials have greater flexural strength and increased 
durability against chemical and mechanical aging compared to conventional and 
CAD/CAM PMMA interim materials. They used different accelerated aging regi-
men by utilizing 60,000 cycles of chewing simulation and different storage media 
(artificial saliva, mouthwash and coffee) [46]. Pantea et al., reported that 3D-printed 
interim resins have a higher flexural strength and modulus of elasticity than 
conventional interim resin materials. This may be attributed to the use of different 
printing methods (DLP and LCD) and the absence of accelerated aging [30]. 

There are several limitations on the current study. Due to the fact that this 
study was conducted in vitro with flat specimens that did not accurately replicate 
in vivo settings. Furthermore, since the study tested the 3D-printed material 
from one manufacturer, the results may not apply to other brands or varieties of 
3D-printing resin. Given that 3D-printed interim resin restorations can be fab-
ricated with modified characteristics due to variations in composition, polymer-
ization duration, and printing techniques, future investigations should compare 
different 3D-printed resin materials and printing methods. Although in vitro 
studies provide valuable preliminary data, clinical studies are essential to validate 
and confirm these findings in oral environment. 
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5. Conclusion 

The CAD/CAM milled interim restorations demonstrated better mechanical 
properties when compared to conventional, and 3D-printed interim restorations. 
CAD/CAM milled interim restorations could be recommended for long-term 
temporization, long-span prosthesis, full arch implant-supported interim pros-
thesis or for patients with increased occlusal forces, such as parafunctional habits 
or hard food consumption. 
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